Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Neuroscience Bulletin ; (6): 311-322, 2021.
Article in Chinese | WPRIM | ID: wpr-952009

ABSTRACT

Myoclonus dystonia syndrome (MDS) is an inherited movement disorder, and most MDS-related mutations have so far been found in the ε-sarcoglycan (SGCE) coding gene. By generating SGCE-knockout (KO) and human 237 C > T mutation knock-in (KI) mice, we showed here that both KO and KI mice exerted typical movement defects similar to those of MDS patients. SGCE promoted filopodia development in vitro and inhibited excitatory synapse formation both in vivo and in vitro. Loss of function of SGCE leading to excessive excitatory synapses that may ultimately contribute to MDS pathology. Indeed, using a zebrafish MDS model, we found that among 1700 screened chemical compounds, Vigabatrin was the most potent in readily reversing MDS symptoms of mouse disease models. Our study strengthens the notion that mutations of SGCE lead to MDS and most likely, SGCE functions to brake synaptogenesis in the CNS.

2.
Journal of Veterinary Science ; : 111-115, 2014.
Article in English | WPRIM | ID: wpr-56427

ABSTRACT

Molecular mechanisms underlying the effects of Fyn on cell morphology, pseudopodium movement, and cell migration were investigated. The Fyn gene was subcloned into pEGFP-N1 to produce pEGFP-N1-Fyn. Chinese hamster ovary (CHO) cells were transfected with pEGFP-N1-Fyn. The expression of Fyn mRNA and proteins was monitored by reverse transcription-PCR and Western blotting. Additionally, transfected cells were stained with 4',6-diamidino-2-phenylindole and a series of time-lapse images was taken. Sequences of the recombinant plasmids pMD18-T-Fyn and pEGFP-N1-Fyn were confirmed by sequence identification using National Center for Biotechnology Information in USA, and Fyn expression was detected by RT-PCR and Western blotting. The morphology of CHO cells transfected with the recombinant vector was significantly altered. Fyn expression induced filopodia and lamellipodia formation. Based on these results, we concluded that overexpression of mouse Fyn induces the formation of filopodia and lamellipodia in CHO cells, and promotes cell movement.


Subject(s)
Animals , Cricetinae , Mice , Blotting, Western , CHO Cells , Cricetulus , Genetic Vectors , Green Fluorescent Proteins/genetics , Proto-Oncogene Proteins c-fyn/genetics , Pseudopodia/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Time-Lapse Imaging , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL